SOS 139
 II. 4 Alternating Current

Dr. Prapun Suksompong $\quad v_{R}=i_{R} R$

prapun@siit.tu.ac.th

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

How will R, L, C behave in circuits

under forced oscillation.

$$
v_{L}=L \frac{d i_{L}}{d t}
$$

Office Hours:

Library (Rangsit) Mon 16:20-16:50
BKD 3601-7 Wed 9:20-11:20

Reference

- Principles of Physics
- Ninth Edition, International Student Version
- David Halliday, Robert Resnick, and Jearl Walker

- Chapter 31
- 31-6 Alternating Current
- 31-7 Forced Oscillations
- 31-8 Three Simple Circuits

Alternating-Current Generator

- A conducting loop rotates (with constant angular speed ω) in an external (uniform and constant) magnetic field.

- Connections from each end of the loop to the external circuit are made by means of that end's slip ring.

Sinusoids

- A sinusoid (or sinusoidal signal) is a signal (e.g. voltage or current) that has the form of the sine or cosine function.
- Turn out that you can express them all under the same notation using only cosine (or only sine) function.
- We will use cosine.
- A sinusoidal current is referred to as alternating current (ac).
- Circuits driven by sinusoidal (current or voltage) sources are called ac circuits.
- We use the term ac source for any device that supplies a sinusoidally varying voltage (potential difference) or current
- The usual circuit-diagram symbol for an ac source is

Sinusoids: Standard Form

- General sinusoidal signal (in cosine form)

$$
x(t)=X_{m} \cos (\omega t+\phi)=X_{m} \cos (2 \pi f t+\phi) .
$$

- X_{m} : amplitude of the sinusoid
- Nonnegative when expressed in standard form
- T: period (the time of one complete cycle)
- f : frequency
- \#cycles per second $\quad f=\frac{1}{T}=\frac{\omega}{2 \pi}$
- ω : angular frequency in radians/s (or rad/s)
- ϕ : phase
- Between -180° and $+180^{\circ}$ in standard form

Around the World: Voltages and Frequencies

Conversions to standard form

- When the signal is given in the sine form, it can be converted into its cosine form via the identity

$$
\sin (x)=\cos \left(x-90^{\circ}\right)
$$

In particular,

$$
X_{m} \sin (\omega t+\phi)=X_{m} \cos \left(\omega t+\phi-90^{\circ}\right)
$$

- We can avoid having X_{m} with negative sign by the following conversion:

$$
-\cos (x)=\cos \left(x \pm 180^{\circ}\right)
$$

In particular,

$$
-A \cos (\omega t+\phi)=A \cos \left(2 \pi f t+\phi \pm 180^{\circ}\right) .
$$

- Note that usually you do not have the choice between $+180^{\circ}$ or -180°. The one that you need to use is the one that makes $\phi \pm 180^{\circ}$ falls somewhere between -180° and $+180^{\circ}$.

Exercise
Express the following sinusoids in their standard forms

$$
\begin{aligned}
5 \cos \left(2 t-45^{\circ}\right) & =5 \cos \left(2 t+\left(-45^{\circ}\right)\right) \\
5 \sin (\underbrace{2 t-45^{\circ}}_{x}) & =5 \cos (\underbrace{2 t-45^{\circ}}_{x}-90^{\circ})=5 \cos \left(2 t+\left(-135^{\circ}\right)\right) \\
-5 \cos \left(2 t-45^{\circ}\right) & =5 \cos \left(2 t-45^{\circ} \oplus 180^{\circ}\right)=5 \cos \left(2 t+135^{\circ}\right) \\
-5 \sin \left(2 t-45^{\circ}\right) & =-5 \cos \left(2 t-45^{\circ}-90^{\circ}\right)=-5 \cos \left(2 t-135^{\circ}\right) \\
& =5 \cos \left(2 t-135^{\circ}+180^{\circ}\right)=5 \cos \left(2 t+45^{\circ}\right)
\end{aligned}
$$

Exercise

$$
\phi_{v}=\phi_{i}
$$

$$
\begin{aligned}
I_{m} \cos \left(\omega t+\phi_{i}\right) \underbrace{+}_{-} \downarrow_{i} v & =L \frac{d i}{d t}=L \frac{d}{d t}\left(I_{m} \cos \left(\omega t+\phi_{i}\right)\right) \\
& =L I_{n}\left(-\sin \left(\omega t+\phi_{i}\right)\right) \omega \\
& =\omega L I_{m}\left(\cos \left(\omega t+\phi_{i}-90^{\circ}+180^{\circ}\right)\right) \\
& =(\omega L) I_{m} \cos \left(\omega t+\phi_{i}+90^{\circ}\right)
\end{aligned}
$$

Inductor: $V_{m}=(\omega L) I_{m}$

$$
\phi_{v}=\phi_{i}+90^{\circ}
$$

Resistor: $V_{m}=I_{m} R$
$I_{n} \cos \left(\omega t+s \sigma_{j}\right)$

Application: Measuring Body Fat by Bioelectric Impedance Analysis

- The electrodes attached to this overweight patient's chest are applying a small ac voltage of frequency 50 kHz .
- The attached instrumentation measures the amplitude and phase angle of the resulting current through the patient's body.
- These depend on the relative amounts of water and fat along the path followed by the current, and so provide a sensitive
 measure of body composition.

